Valuations and Filtrations
نویسندگان
چکیده
The classical theory of Gröbner bases, as developed by Bruno Buchberger, can be expanded to utilize objects more general than term orders. Each term order on the polynomial ring k[x] produces a filtration of k[x] and a valuation ring of the rational function field k(x). The algorithms developed by Buchberger can be performed by using directly the induced valuation or filtration in place of the term order. There are many valuations and filtrations that are suitable for this general computational framework that are not derived from term orders, even after a change of variables. Here we study how to translate between properties of filtrations and properties in valuation theory, and give a characterization of which valuations and filtrations are derived from a term order after a change of variables. This characterization illuminates the properties of valuations and filtrations that are desirable for use in a generalized Gröbner basis theory.
منابع مشابه
Quotient BCI-algebras induced by pseudo-valuations
In this paper, we study pseudo-valuations on a BCI-algebra and obtain some related results. The relation between pseudo-valuations and ideals is investigated. We use a pseudo-metric induced by a pseudovaluation to introduce a congruence relation on a BCI-algebra. We define the quotient algebra induced by this relation and prove that it is also a BCI-algebra and study its properties.
متن کاملAre Time Consistent Valuations Information Monotone?
Multi-period risk functionals assign a risk value to discrete-time stochastic processes. While convexity and monotonicity extend in straightforward manner from the singleperiod case, the role of information is more problematic in the multi-period situation. In this paper, we define multi-period functionals in such a way that the development of available information over time (expressed as a fil...
متن کاملMATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION
Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 34 شماره
صفحات -
تاریخ انتشار 2002